Journal of Electrical Vocational Education @

E-ISSN: 3110-486X

Vol. 01, No. 02, November, pp. 153~160 J EVE .

DOI : https://doi.org/10.24036/jeve.v1i2.47

153

Analysis of the Evolution Patterns of Student Software

Development through GitHub Repository Activity in

Project-Based Learning

Mutia Rahmi Dewi', Defni?, Yoliza Erwanda3

123nformation Technology Department, Politeknik Negeri Padang, Padang, Indonesia

Corresponding Author mail* : mutiarahmi@pnp.ac.id

Article Info

ABSTRACT

Article history:

Received 29 December 2025
Revised 30 December 2025
Accepted 15 January 2025

Keywords:

software evolution

software construction
github

Project Based Learning
commit analysis

Software evolution is a continuous process of change that occurs
throughout the system development life cycle. In the context of higher
education, understanding the dynamics of software change is essential
for assessing students’ competencies in managing team-based projects.
This study aimed to analyze software evolution patterns in student
projects developed using the Project-Based Learning (PBL) approach.
The research data were obtained from 12 public GitHub repositories
belonging to students who developed applications based on the
Laravel framework. The study employs a descriptive quantitative
approach by analyzing commit log data using automated Python-
based scripts. The analysis focuses on activity metrics such as the
number of commits, the average number of files changed per commit,
and the identification of the most frequently modified files. The results
indicate that each group exhibits distinct construction and evolution
patterns. Several groups exhibited extremely high numbers of files
changed per commit, indicating large-scale commits and suboptimal
version control practices, such as improper use of .gitignore. The most
frequently modified files were controllers, views, configuration files,
and database migration files, reflecting a strong focus on application
logic and interface development. These findings demonstrate that PBL
effectively supports iterative and collaborative software development
practices, but also reveal gaps in students’ understanding of structured
change management and semantic commit discipline. This study
provides empirical evidence of student software evolution behavior
and offers a foundation for developing automated, data-driven
evaluation systems to support software engineering education,
particularly in vocational contexts.

Corresponding Author:

Mutia Rahmi Dewi
Information Technology Department, Politeknik Negeri Padang, Padang, Indonesia

Email: mutiarahmi@pnp.ac.id

A.

INTRODUCTION

The construction and evolution of software are fundamental aspects of the modern software

development life cycle. This process focuses not only on programming activities but also on the
software's ability to adapt to changes in user needs, technological advancements, and collaboration

Journal homepage: hitps://jeve.ppj.unp.ac.id/

154
o] ISSN: 3110-486X

dynamics within development team[1]. As the complexity of systems and the expectation for
software resilience increase, there is a need for adaptive, iterative, and collaborative development
approaches. In the context of higher education, Project-Based Learning (PBL) has been recognized
as an effective pedagogical approach to integrating technical skills and collaborative skills through
hands-on experience in software development projects[2].

The implementation of PBL in software engineering provides students with the opportunity
to be fully involved in the development cycle, from planning and construction to maintenance and
system evolution. However, the effectiveness of this approach cannot only be assessed based on the
final product, but also needs to be viewed in terms of the dynamics of the development process that
occurs within the project repository. Activities such as commit frequency, code change complexity,
and integration patterns reflect the students' understanding of modern software engineering
principles[3].

Various previous studies have shown that analyzing historical data from software
repositories, particularly through GitHub commit logs, can provide valuable insights into the
construction and evolution patterns of features in collaborative projects[4]. These commit activities
represent processes such as feature additions, bug fixes, and code refactoring that contribute to the
quality of the system[5]. This analytical approach allows for a quantitative evaluation of developer
behavior, including students, which can be used to assess the development of technical competencies
and team effectiveness[6].

In recent years, GitHub has become the primary platform supporting students' collaborative
activities in software development. Features such as version control, branching, and pull requests
provide a rich empirical data source for tracing the dynamics of system construction and
evolution[7]. Analyzing commit-based metrics (commit-level metrics) can reveal development
characteristics, the complexity of changes, and the relationship between the frequency and depth of
code modification[8]. However, there remains a significant research gap in understanding how the
software features developed by students evolve throughout the PBL process. Most previous studies
have focused on the final product, without considering the feature change dynamics during the
development process.

Based on this background, this study focuses on analyzing the evolution patterns of software
features in student projects based on Project-Based Learning, using historical data from 12 GitHub
repositories. Each repository represents one Laravel-based development project, which implements
approximately 30 Product Backlog Items (PBIs) over one semester. This research aimed to identify
the construction and evolution patterns of features, code change complexity, and interrelationships
among development activities within the context of project-based learning. Academically, this study
is expected to broaden the understanding of software evolution behavior in the context of
information technology education. Practically, the findings of this study are expected to contribute
to the development of data-based evaluation instruments to assess the effectiveness of Project-Based
Learning implementation.

B. METHOD
2.1. Literature Review and Hypothesis Development
2.1.1. Software Construction and Feature Evolution

Software construction is an implementational phase in the Software Development Life Cycle
(SDLC) involving coding, debugging, and module integration activities[9]. In an educational context,
this phase becomes an indicator of students' ability to implement designs into functional systems.
On the other hand, software evolution focuses on continuous changes to the system to adapt to user
needs and technological advancements[10].

Recent studies highlight the importance of historical documentation in understanding
software evolution. Historical data in version control systems can be used to predict change trends

155
Journal of Electrical Vocational Education, Vol. 01, No. 01, January 2026 ISSN: 3110-486X

and detect areas with high technical risks (technical debt)[11]. Meanwhile, analyzing commit
patterns in student projects can serve as an objective and measurable tool for evaluating project-
based learning[12].

2.1.2. Project-Based Learning in Software Engineering Education

Project-Based Learning has been shown to improve students' problem-solving abilities,
collaboration, and conceptual understanding in the fields of engineering and informatics[13]. In the
field of software engineering, this approach is implemented through team-based projects that reflect
actual industry practices. Research by Shahid et al. found that using PBL in programming courses
helps students understand the entire software life cycle and internalize Agile Development
practices[14].

Moreover, several studies also highlight the importance of learning analytics from GitHub
platforms as tools for assessing student engagement. Student commit patterns can be used to assess
participation and collaboration in group projects[15]. Thus, the integration of PBL and repository
data analysis could represent a new approach for evaluating learning effectiveness in software
engineering.This study uses a descriptive quantitative approach, utilizing data-driven software
analytics

2.2. Research Design

This study uses a descriptive quantitative approach, utilizing data-driven software analytics
from the students' GitHub repositories. The goal is to identify the evolution patterns of software
features based on the commit history performed by each project team. This approach aligns with the
mining software repositories (MSR) methodology, commonly used in software evolution research to
understand the dynamics of collaboration and source code changes[16].

2.3. Data Sources

The data used in this study comes from 12 public GitHub repositories owned by students in
the Software Construction and Evolution course. Each repository represents one project group in
Project-Based Learning. Each group develops a web application with features equivalent to about 30
Product Backlog Items (PBIs).

The following table presents a list of the repositories analyzed:

Table 1. List of Repositories

No Group Github Repository
1 Kelompok 1 furgonaugust17/PBL2D-Kel6-Project
2 Kelompok 2 rmaisshadig/fabulous-five
3 Kelompok 3 Dikalefrianto/Agile D4
4 Kelompok 4 Anlaharpanda2/AgileD3 2025
5 Kelompok 5 ReykelRaflen/PBL
6 Kelompok 6 nauvalalpen/Agile-D1
Kelompok 7 gioaprilino/Refive-PBL
Kelompok 8 Gioezzy/SIGAP
9 Kelompok 9 DarulFebri/Sistem-Informasi-Tugas-
Akhir-dan-Praktek-Kerja-Lapangan
10 Kelompok 10 Cukurukuk-TI/GreonePBL
11 Kelompok 11 deanz Englicious

12 Kelompok 12 pbl-1b/pbl-1b-code

Analysis of the Evolution Patterns of Student Software Development...(Mutia Rahmi Dewi)

156
o] ISSN: 3110-486X

From each repository, data extraction is performed, including;:
¢ Group name and repository URL

e Total number of commits
e Average number of files changed per commit

e List of the ten most frequently changed files

The data extraction process is automated using a Python script based on GitPython to clone
the repositories and read commit metadata. The extracted data is stored in .csv format for further
analysis.

2.4. Analysis Process
The analysis is performed in three main stages:
1. Data Cleaning and Normalization — Commits with empty or non-informative messages are

removed. Only the main branch (main/master) is analyzed to ensure data consistency.
2. Descriptive Statistical Analysis — Defining the research variables to be used in analyzing the

data. These variables are:

Table 2. Research Variables

Variable Indicator Description
Construction Total Commit Total number of commits in a repository
Activity
Change Complexity ~ Avg Files Changed per Average number of files changed per commit
Commit
Focus of Changes Top 10 Files Files most frequently modified
Evolution Pattern Commit vs File Changed Relationship between the frequency of changes and the depth of
modifications

Once the research variables are determined, the frequency of each indicator is calculated and
analyzed. This analysis aims to examine the construction intensity and stability of development
within each group.

3. Evolution Pattern Visualization — The analysis results are visualized using bar charts and
distribution diagrams to facilitate interpretation and comparison between groups. Visualization

helps identify development hotspots and the frequency of changes to specific features.

2.5. Validity and Reliability

To ensure data validity, only repositories with a public commit history and complete project
structures are included. Reliability is maintained by using an automated script for all groups, so the
extraction process does not rely on subjective judgment. Additionally, the research steps are
recorded in a Jupyter notebook, which allows for full replication by other researchers.

C. RESULTS DISCUSSION
3.1. Overview of Construction Activity

Based on the extraction results from 12 student GitHub repositories, a total of 2.274 commits
were obtained during one semester of Project-Based Learning (PBL). The number of commits varied
across groups, ranging from 15 to 510 commits per project. This variation shows differing levels of
development activity between teams, which may be influenced by the collaboration strategies and
task division applied by each group.

157
Journal of Electrical Vocational Education, Vol. 01, No. 01, January 2026 ISSN: 3110-486X

Commit Activity per Group

500

400

i
£ 300 300
E 271
o 257
E 233
(=]
2 200 TE
164
149
117
100
54
15 18
0
13 Q
~ LI I 2 a‘jo 6‘:\ 6"% Dq ¥ ‘\} v
& & S S & & & S S o g g
B O P R R
+ + & ¥ + + + + T T T

Group

Figure 1. Commit activity of each student group during the software construction and evolution
process
Figure 1 shows the distribution of commits across the 12 project groups. Groups with higher
commit numbers exhibit iterative and incremental development patterns. It means that continuous
integration practices encourage teams to commit more frequently in order to minimize code conflicts
and improve software stability.

3.2. Average Number of Files Changed per Commit

Figure 2 shows the average number of files changed per commit. The analysis results
indicate that the average number of files changed per commit reaches 101.46 files. However, this
value is heavily influenced by several outliers. In particular, Group 11 and Group 9 exhibit extremely
high average numbers of files changed per commit (more than 300 files per commit). This condition
indicates the presence of large-scale commits that include many build artifacts or dependencies, such
as vendor/ directories, node_modules/, compiled files, or auto-generated files. This phenomenon
also reflects students’ lack of understanding of good version control practices, especially in the
application of the .gitignore file, resulting in directories that should be excluded being uploaded to
the repository. This finding suggests that students have not yet fully grasped the principles of

efficient and structured change management in software development.

Average Files Changed per Commit

350 341.40
325.54

300
210.26 218.76
200
150
100
26.67
W _4.66 el a26 4.88

A > 9 S N
3 3 3 i S ~

& & Q" & & & &

\O@ & & & & S & @Q‘) &

@ *g. *g, 4& .*g. W -{_Q:P .{g.\o *_?)o
Group

~J
wu
(=}

Average Files Changed

\06\

+&

)

+&

WO

&

Analysis of the Evolution Patterns of Student Software Development...(Mutia Rahmi Dewi)

158
o] ISSN: 3110-486X

Figure 2. Average number of files changed per commit by each student group

3.3. Most Frequently Changed Files
Figure 3 illustrates the ten files most frequently changed across all repositories. The majority
of changes occurred in:

. Controller and view files (particularly in Laravel),
. Configuration files (.env, web.php),
. Files related to database migration.

This indicates that students’ primary focus was on constructing application logic and user
interfaces. The frequency of changes to configuration files also suggests repeated adjustments to the
testing and deployment environments. These findings affirm that the early phase of a project is
typically dominated by structural and architectural changes, while feature evolution becomes more

dominant in the middle and later stages.
Commits vs Average Files Changed
350

@] Group

Q Kelompok 1
Kelompok 2
Kelompok 3
Kelompok 4
Kelompok 5
Kelompok &
Kelompok 7
Kelompok 8
Kelompok 9
Kelompok 10
Kelompok 11
Kelompok 12

300

250

200

150

@@Q0000C0C0O00OR®®

100

Average Files Changed per Commit

50 [}

O

3 o oee e

0 100 200 300 400 500
Total Commits

Figure 3. Correlation between the number of commits and the average files changed per commit

3.4. Discussion

Overall, the results of this study support the view that Project-Based Learning can be an
effective means of practicing modern software engineering principles. The empirical data from
GitHub shows that students are not only coding but also internalizing collaborative practices such
as branching, pull requests, and commit discipline. These findings emphasize the importance of
using version control platforms in information technology education.

However, there are indications of low consistency in commit messages and insufficient
documentation, which hinder the semantic interpretation of feature changes. This suggests the need
for further guidance on semantic commit practices and integration with automatic code quality
analysis tools such as SonarQube or GitHub Actions for continuous evaluation.

D. CONCLUSION

This study provides empirical insights into the construction and evolution patterns of
software in student projects within the context of Project-Based Learning (PBL). The analysis of 12
GitHub repositories shows that some groups experienced intensive construction and stabilization
phases, while others showed relatively low activity, indicating differences in team working
strategies and project management practices. The variability in the number of files changed per

159
Journal of Electrical Vocational Education, Vol. 01, No. 01, January 2026 ISSN: 3110-486X

commit also suggests differences in students’ understanding of version control practices and
dependency management.

However, this study has some limitations that need to be noted. First, the data only includes
commit history without considering the semantic context of each code change, which reduces the
depth of the analysis regarding the type and purpose of changes made. Second, the variation in
technical capabilities between groups and differences in project complexity may affect the frequency
and patterns of commits, so the results do not fully reflect individual learning effectiveness. Third,
this study has not directly evaluated the relationship between construction activity and the final
product quality, such as system performance or user satisfaction.

These limitations open opportunities for further research to develop more comprehensive
approaches, such as integrating semantic commit message analysis, issue tracking, and pull requests
to map software feature evolution in more detail. A mixed-methods approach combining
quantitative repository analysis with student interviews or reflections could also enhance the
validity of the findings. Thus, the results of this study are expected to serve as a foundation for
understanding how effective software construction practices can contribute to the success of Project-
Based Learning in software engineering education.

REFERENCES

[1] A. Obaid, “Using prototypes in agile software development,” I/CI, vol. 3, no. 2, pp. 23-38,
2024, doi: 10.59992/ijci.2024.v3n2p2.

[2] G. Guo, “Enhancing project-based manufacturing education with integrated engineering
software tools,” Comput. Appl. Eng. Educ., vol. 33, no. 2, 2025, doi: 10.1002/cae.70012.
[3] C. Connolly and G. Meiselwitz, “integrating software engineering in computer

programming education,” pp. 50-54, 2009, doi: 10.1145/1631728.1631745.

[4] Y. Golubev, J. Li, T. Bryksin, V. Bushev, and I. Ahmed, “Changes from the trenches: should
we automate them?,” 2021, doi: 10.48550/arxiv.2105.10157.

[5] E. Zabardast,]. Gonzalez-Huerta, and D. Smite, “refactoring, bug fixing, and new
development effect on technical debt: an industrial case study,” pp. 376-384, 2020, doi:
10.1109/seaa51224.2020.00068.

[6] S. Bonesso, F. Gerli, and E. Bruni, “The emotional and social side of analytics professionals:
an exploratory study of the behavioral profile of data scientists and data analysts,” Int. J.
Manpow., vol. 43, no. 9, pp. 19-41, 2022, doi: 10.1108/ijm-07-2020-0342.

[7] M. AlMarzougq, A. AlZaidan, and J. Dallal, “Mining github for research and education:
challenges and opportunities,” Int. . Web Inf. Syst., vol. 16, no. 4, pp. 451-473, 2020, doi:
10.1108/ijwis-03-2020-0016.

[8] H. Toba, T. K. Gautama, J. Narabel, A. Widjaja, and S. F. Sujadi, “Evaluasi metodologi ci/cd
untuk pengembangan perangkat lunak dalam perkuliahan,” JEPIN (Jurnal Edukasi dan
Penelit. Inform., vol. 8, no. 2, pp. 227-234, 2022.

[9] M. Chan and S. Yazid, “A novel framework for information security during the sdlc
implementation stage: a systematic literature review,” |. Resti (Rekayasa Sist. Dan Teknol.
Informasi), vol. 8, no. 1, pp. 88-99, 2024, doi: 10.29207/resti.v8i1.5403.

[10] A. Alkhalil, “evolution of existing software to mobile computing platforms: framework
support and case study,” Int. |. Adv. Appl. Sci., vol. 8, no. 3, pp. 100-111, 2021, doi:
10.21833/ijaas.2021.03.013.

[11] M. Murillo, G. Lépez, R. Spinola, J]. Guzman, N. Rios, and A. Pacheco, “Identification and
management of technical debt,” J. Softw. Eng. Res. Dev., 2023, doi: 10.5753/jserd.2023.2671.

[12] S.Hamer, C. Quesada-Lopez, A. Martinez, and M. Jenkins, “Using git metrics to measure
students’ and teams’ code contributions in software development projects,” Clei Electron. .,
vol. 24, no. 2, 2021, doi: 10.19153/cleiej.24.2.8.

Analysis of the Evolution Patterns of Student Software Development...(Mutia Rahmi Dewi)

160

[13]

[14]

[15]

[16]

[17]

(18]

o] ISSN: 3110-486X

M. Yunus, P. Setyosari, S. Utaya, and D. Kuswandi, “The influence of online project
collaborative learning and achievement motivation on problem-solving ability,” Eur. J.
Educ. Res., vol. volume-10-2021, no. volume-10-issue-2-april-2021, pp. 813-823, 2021, doi:
10.12973/eu-jer.10.2.813.

M. Shahid, K. Pervaiz, M. Awais, and S. Khurshid, “Project-based iterative teaching model
for introductory programming course,” Nile |. Commun. Comput. Sci., vol. 5, no. 1, pp. 10-41,
2023, doi: 10.21608/njccs.2023.321167.

M. Trujillo, “The penumbra of open source: projects outside of centralized platforms are
longer maintained, more academic and more collaborative,” 2021, doi:
10.48550/arxiv.2106.15611.

M. Scheidgen and J. Fischer, “Model-based mining of source code repositories,” pp. 239
254, 2014, doi: 10.1007/978-3-319-11743-0_17.

T. Hericko, B. Sumak, and S. Karakati¢, “commit-level software change intent classification
using a pre-trained transformer-based code model,” Mathematics, vol. 12, no. 7, p. 1012,
2024, doi: 10.3390/math12071012.

R. Alfayez and A. Alazba, “merge conflict prediction using feature selection and stacking
heterogeneous ensembles: an empirical investigation,” J. Softw. Evol. Process, vol. 37, no. 9,
2025, doi: 10.1002/smr.70047.

